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Abstract—Modern packaging design requires extensive signal
integrity simulations in order to assess the electrical performance
of the system. The feasibility of such simulations is granted only
when accurate and efficient models are available for all system
parts and components having a significant influence on the signals.
Unfortunately, model derivation is still a challenging task, despite
the extensive research that has been devoted to this topic. In fact,
it is a common experience that modeling or simulation tasks some-
times fail, often without a clear understanding of the main reason.
This paper presents the fundamental properties of causality,
stability, and passivity that electrical interconnect models must
satisfy in order to be physically consistent. All basic definitions
are reviewed in time domain, Laplace domain, and frequency
domain, and all significant interrelations between these properties
are outlined. This background material is used to interpret several
common situations where either model derivation or model use in
a computer-aided design environment fails dramatically. We show
that the root cause for these difficulties can always be traced back
to the lack of stability, causality, or passivity in the data providing
the structure characterization and/or in the model itself.

Index Terms—Bilateral Laplace transform, causality, dispersion
relations, high-speed interconnects, linear systems, modeling, pas-
sivity, stability.

1. INTRODUCTION

HE design of modern high-speed digital or mixed-signal

packaged systems calls for automated and robust modeling
and simulation tools [1], [2]. Any system component or inter-
connect that has some influence on the quality of the signals
must be accurately characterized and modeled over a broad fre-
quency band so that its signal degradation effects can be as-
sessed via system-level simulations. Despite the extensive re-
search work that has been devoted to model extraction for pas-
sive components and interconnects [3]—[14], this remains a very
challenging task. This is partly due to the ever increasing band-
width that is required for the characterization of the structure
and partly to the overall system complexity, both in terms of
number of components and fine geometrical details.

A common strategy that is employed for model extraction
is based on a two-step procedure. First, the frequency-do-
main responses of a given structure are obtained via direct
measurement or simulation. Examples can be the scattering
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matrix of some electrical interconnect or the impedance of a
power/ground distribution network. This first step leads to a set
of tabulated frequency responses of the structure under inves-
tigation. Then, a suitable identification procedure is applied to
extract a model from the above tabulated data. This second step
aims at providing a simplified mathematical representation of
the input—output system behavior, which can be employed in a
suitable simulation computer aided-design (CAD) environment
for system analysis, design, and prototyping. For instance,
rational macromodels are highly desirable for electrical inter-
connects since they can be easily synthesized as SPICE netlists.
References [3]-[14] provide an overview of the most prominent
model extraction techniques for electrical interconnects and
package structures.

One of the key points in the above-described procedure is ac-
curacy preservation during the model extraction. Obviously, the
designer needs accurate models for a sound representation of the
electrical behavior of the system. However, accuracy is not the
only and not even the most important feature for assessing the
quality of a model. One of the purposes of this paper is indeed
to show that more fundamental properties must be guaranteed.
What is really relevant under a practical standpoint is the phys-
ical consistency of the final model, which can be compromised
in any of the above two steps. Measurement errors or numer-
ical simulation inaccuracies can lead to poor system specifica-
tions in frequency domain (first step), which in turn will im-
pair any subsequent modeling attempt. Nonetheless, even ad-
vanced state-of-the-art modeling algorithms (second step) may
have some weakness which might produce inconsistent models
even when the original data specification is good.

Any model must be characterized by the same basic phys-
ical properties of the structure that it should represent. In this
paper, we concentrate on linear systems that are intrinsically
stable, causal, and passive, such as electrical interconnects and
passive components. We will show that when the frequency-do-
main characterization (obtained via direct measurement or sim-
ulation) of the structure lacks one or more of these properties,
several inconsistencies may arise, leading to a possible failure
of the signal integrity assessment. It should be noted that sta-
bility, causality, and passivity are often assumed blindly by the
practitioner or even by the highly trained engineer, who may be
unaware of the true reason for the failure of some analysis/de-
sign task making use of flawed models.

In this paper, the fundamental properties of stability,
causality, and passivity are reviewed, and several results on
their interrelations are presented. Although most of the material
is not new, we cast all fundamental properties in a form that
is suitable to interpret a few common situations (mainly in the
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field of electrical interconnect and packaging) where model
derivation and/or model use in a CAD simulation environment
fail. Section II presents an example of such a scenario, pro-
viding additional motivation for this tutorial paper.

We review the basic time-domain definitions of causality, sta-
bility, and passivity in Section III. Section IV analyzes the im-
plications of these three properties in the Laplace domain, which
is the most natural domain for an in-depth theoretical analysis.
Frequency domain conditions are then reviewed in Section V.
The theoretical presentation is interspersed with several illus-
trative examples. These examples are deliberately very simple,
in order to focus on each specific result during the flow of the
presentation. However, a few examples coming from real ap-
plications for which modeling or simulation is problematic are
presented in Section VI. The theory presented in this paper will
provide a straightforward interpretation of these difficulties, by
pointing out their root cause. Once this cause is detected, pos-
sible countermeasures can be taken, as discussed in the paper
and in Section VII.

The theoretical material is presented in a formal way. How-
ever, fine mathematical details are often omitted to avoid heavy
notations and long derivations. Therefore, most theorems are
stated without a proof. Also, most results are presented by as-
suming that all signals are standard functions of time, although
the theory of distributions should be used whenever appropriate.
These advanced topics are fully covered in the references.

II. MOTIVATION

This section considers a simple interconnect example for
which the generation of a macromodel fails. We present the ex-
ample under the standpoint of the design engineer, who knows
the physical geometry of the interconnect and is required to
generate a SPICE-compatible model in order to carry out the
design. The structure is a three-conductor transmission line. Its
scattering matrix is first computed over a bandwidth of 4 GHz
using a commercial frequency-domain 3-D field solver. Then,
the various scattering matrix entries are processed by the very
popular and robust vector fitting (VF) algorithm [3] in order to
produce a lumped model for the structure. It is well known that
VF produces a model in poles-residues form, which is readily
synthesized into a SPICE netlist. It turns out that VF fails to
provide a reasonably accurate model. As an example, we report
in Fig. 1 the original return loss S;; and the corresponding
response of a rational model with 20 poles. Although the raw
data are quite smooth, the model is very inaccurate.

The first solution one can think of in order to improve the ac-
curacy is to increase the number of model poles or the number of
VF iterations. Table I reports the resulting fitting error for up to
40 poles. The table clearly shows that even if the model order or
the number of VF iterations are increased, the accuracy remains
poor. The rational fitting scheme does not seem to converge.

The standard VF algorithm avoids the presence of unstable
poles by changing the sign of their real part whenever they occur
during the iterations. Our next try is to disable this feature and
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Fig. 1. VF-generated model (20 poles, all with negative real part). Raw S,
response (solid line) and model response (dashed line).

TABLE I
ACCURACY OF THE RATIONAL MODEL GENERATED BY VECTOR FITTING.
POLES WITH POSITIVE REAL PARTS ARE NOT ALLOWED

Model order | VF iterations | Maximum error
10 4 1.4 x 1072
20 4 1.1 x 1072
30 4 1.0 x 1072
30 15 1.1 x 1072
40 15 1.2 x 1072

to let VF choose the best poles placement in the entire com-
plex plane. Surprisingly, VF readily computes a highly accurate
model even with few poles, as illustrated in Table II. Unfortu-
nately, this model will be useless for any practical purpose be-
cause, due to the presence of unstable poles, any time-domain
simulation in a CAD environment will blow up exponentially.
Moreover, it is quite unreasonable that the frequency response
of a certainly passive structure requires the presence of unstable
poles for its rational approximation.

It turns out that the raw frequency responses are flawed by
causality violations, as we will demonstrate in Section VI. How-
ever, the symptoms of these inconsistencies arise only when
trying to fit the data. Consequently, the main problem is diffi-
cult to identify, and even more difficult is to realize how to fix
it. The theoretical results presented in Sections III-V will pro-
vide the background material that will allow, in Section VI, a
complete explanation and interpretation of the VF results for
this example.

1II. TIME DOMAIN

In this section, the physical concepts of causality, stability,
and passivity are described and precisely defined by appropriate
mathematical conditions. We restrict our attention to linear! and

1A system is linear if the response to a linear combination of two inputs

: x(t) = e1xy(t) + c2xo(1)
is w(t) = ciwi(t) + cowa(t)

where w (t) and wo (t) are the outputs corresponding to each input x4 (t) and
X2 (t), respectively.
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TABLE II
ACCURACY OF RATIONAL MODEL GENERATED BY VF. POLES WITH POSITIVE
REAL PARTS ARE ALLOWED

Model order | Stable | Maximum error
10 NO 7.3x 1073
20 NO 1.4 x 1074
30 NO 1.2 x 1074

\Output

:tO

Fig. 2. Example of noncausal system behavior: two inputs 2 (t) and x2(t),
equal up to t = to, leading to outputs w; (t) and w»(t) that differ earlier than
i = to.

time-invariant? electrical n-port networks, with input and output
denoted, respectively, by the n-element vectors x(t) and w(t).
Due to linearity and time invariance, the system can be conve-
niently represented with a convolution [26] relating the input
x(t) and output w(t),

w(t) = h(t) « x(t) = /

— 00

+o0
h(t — 7)x(7) dr. (1)

The matrix h(t) is the system impulse response, with each el-
ement h;;(t) being the response at port ¢ when an ideal im-
pulse (Dirac’s delta) is applied at port j, with all other inputs
set to zero. We will consider different representations of elec-
trical n-port networks, including impedance (x being currents
and w voltages), admittance (x being voltages and w currents),
and scattering (both x, w being power waves).

A. Causality

It is part of our real world experience that an effect cannot
precede its cause. This intuitive concept is the fundamental prin-
ciple of causality [33], that every physical system has to respect.
For example, if two inputs x; (¢) and x2(t), equal up to ¢ = o,
are applied to a causal system, their respective outputs are ex-
pected to be equal up to t = #¢. If this is not the case (see Fig. 2),
the system is noncausal, because it forecasts a difference in the
inputs before it actually occurs.

The precise definition of causal system that follows is just the
formal writing of this intuitive consideration.

Definition II1.1 (Causality [25]): A system is causal if and
only if for all input pairs x; (¢) and x2(¢) such that

Xl(t) = XQ(t), t S to \V/t()

the two corresponding outputs satisfy

W1 (t) = Wy (t)7

2The time-invariance property identifies those systems that do not change
their behavior with time. If w(¢) is the output excited by input x(t), then w (¢t —
7) is the output for the delayed input x(t — 7).

t<to.

From this general definition, a simpler condition for the
causality of linear systems can be stated [25].

Theorem II1.1: A linear system is causal if and only if for
every input x(¢) that vanishes for ¢ < tp, the corresponding
output w(t) vanishes too for ¢ < tg.

Finally, we derive the important constraint imposed by
causality on the impulse response h(t) of linear time-invariant
(LTT) systems [26].

Theorem II1.2: An LTI system is causal if and only if all the
elements h;;(¢) of its impulse response matrix h(t) are van-
ishing for t < 0, i.e.,

h(t)=0, t<O. 2)

Proof: For the sake of simplicity, we consider a scalar im-

pulse response h(t). Condition (2) is necessary for causality

because if a Dirac’s delta §(¢) is taken as input, the output is

w(t) = h(t)*8(t) = h(t). Since input vanishes for ¢ < 0, then,
for Theorem III.1, the output A (%) must vanish too for ¢ < 0.

Condition (2) is also sufficient to guarantee causality. In this
case (1) becomes

wlt) = /_ Wt — 7)a(r) dr

and, due to the upper integration limit, causality follows from
Theorem III.1. ]

Remark I11.1: The above definitions of causality are general
and apply to both lumped and distributed systems. In the latter
case, however, it may be important to adopt a more stringent
definition by explicitly considering the propagation delays due
to the finite propagation speed of signals [33]

hij(t)zov t<Tiyj, Ti;>20 Vi,j.

This holds, e.g., in any transmission-line network. The identifi-
cation of models that take into account these propagation de-
lays is indeed an active research area [15]-[24]. Throughout
this paper, we will adopt the delay-free definition of causality
of Theorem II.2. Therefore, we will always refer to causality
meaning zero-delay causality.

B. Stability

The concept of stability is related to the boundedness of the
system responses. In fact, engineers always verify that their cir-
cuits are stable in order to be sure that no inputs can drive them
beyond operating limits. For this reason, although several dif-
ferent definitions of stability are available, herewith we consider
the so-called bounded-input bounded-output (BIBO) definition
of stability [28].

Definition I11.2 (Stability): A system is stable if the output
w(t) is bounded3 for all bounded inputs x(t).

The BIBO stability is guaranteed in an LTT system if and only
if all elements of h(¢) are such that

“+o0
/ |hij(t)] dt < 4o0. 3)

J =00

3A vector w(t) is bounded if any of its components w;(t) is such that
[wi(t)] < M,Vt.
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Fig. 3. Circuits for Examples III.1 and III.2.

The above condition applies to both lumped and distributed sys-
tems.

Example I11.1: Let us consider a physical realization of an
RC circuit, as shown in Fig. 3(a). Since this circuit is made of
real components, causality should be assumed a priori. Under
this hypothesis, the impedance impulse response is

L 4,1 @)

P="re C
where u(t) denotes the unit step (Heaviside) function. Stability
depends on the sign of R and C'. If both are positive (as is true
for real resistors and capacitors), then p < 0, the integral in
(3) is bounded, and the system turns out to be BIBO stable.
Conversely, if for example R is negative (as can be obtained
by employing an active device, at least within a given voltage
range), h(t) grows for large ¢, and stability does not hold.
Example 1I1.2: We consider the physical circuit shown in
Fig. 3(b). The impulse response in the admittance representa-
tion is

h(t) = AeP'u(t),

h(t) = A cos(wot)u(t), A= ®)

1 1
wo m7 L
violates (3). The system is thus not BIBO stable.
This is further confirmed by choosing the bounded input
x(t) = sin(wpt)u(t), which produces the unbounded output
w(t) = (t/2L)sin(wot)u(t). This is the well-known principle
of (lossless) resonance, which will be discussed in more detail
in Section IV.

and

C. Passivity

A physical system is denoted as passive when it is unable
to generate energy. The precise mathematical definition of pas-
sivity depends on the representation adopted for the n-port net-
work. For impedance or admittance representations we have
[27].

Definition I11.3 (Passivity): An n-port network is said to be
passive if

[’#hmﬂmzo 6)

for all t and all admissible port voltages v () and currents i(¢).
For scattering representations, the passivity definition is sim-
ilar, with (6) replaced by

/_ [a’(m)a(T) — bT(7)b(7)]dT > 0 @)

where a(t) and b(t) are, respectively, the incident and reflected
power waves at the ports. The above definitions apply to both
lumped and distributed systems.

a(t)
~ Ry, 3 %R
—
l
Fig. 4. Circuit considered in Example III.3.

Integrals in (6) and (7) represent the cumulative net energy
absorbed by the system up to instant ¢. This energy has to be pos-
itive for all ¢ in any passive system. This requirement is satisfied
if two conditions hold: 1) the system absorbs more energy than
it generates and 2) the possible generation occurs after absorp-
tion. A noncausal system that first generates energy and then
absorbs it, even to a larger extent, is thus considered nonpas-
sive. With this consideration in mind, it is not surprising that all
passive systems are causal [27], [26].

Theorem II1.3: If an LTI system is passive, then it is also
causal.

Proof: We prove this important result for the scattering
representation; a similar result holds for the impedance/admit-
tance representations [27]. For simplicity, we focus on a one-
port system with input a(¢) and output b(¢). The proof estab-
lishes causality by verifying that, for passive systems, Theorem
III.1 always holds. We choose an arbitrary input signal a(t) that
vanishes for ¢ < ty. The passivity definition (7) requires that

ot
/ bA(r)dr <0, t<tg.
— 00
The integrand function is non-negative by construction. There-
fore, the above inequality holds for all ¢ < ¢y only if the output
b(t) vanishes for ¢ < to. Hence, the system is causal. [ |

Example I11.3: Fig. 4 depicts an ideal transmission line (char-
acteristic impedance Ry, propagation constant (3, length [) ter-
minated by a load resistor R. If Ry is assumed as the reference
port impedance, the reflected power wave b(t) turns out to be

R-Ry
R+ Ry

b(t) = FRa(t - 2t0), FR (8)

where to = (I is the one-way time-of-flight of the line. Obvi-
ously, this system is passive if R is positive. We prove this by
applying the passivity condition (7), which in this case becomes

/_ [02(r) = T%a(r — 2t0)] dr

—(1-12) /Hto o2(7) dr + /t 2(7)dr > 0.

J —o00 Jt—2t,

In the above inequality, both integrals are positive for any pos-
sible input signal a(t). Therefore, the sign of the entire expres-
sion depends only on the factor (1 — I'%) that is positive if

R— Ry
R+ Ry

So, if R > 0, (7) holds and the system is passive as expected.
Remark II1.2: Theorem III.3 has two important conse-
quences. First, since all passive systems are causal, any non-
causal system cannot be passive. Second, any macromodeling
algorithm that enforces model passivity will also guarantee
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model causality. Conversely, a model that violates causality
will violate passivity too, as pointed out in the next example.

Example 111.4: We consider again the structure of Example
II1.3, but with a negative delay, i.e., ty < 0. This system is
clearly noncausal, since the output b(t) = I'ga(t—2t¢) is an an-
ticipated version of the input a(t). Of course, a physical equiv-
alent does not exist. However, it is an interesting illustration of
the fact that noncausal systems are also nonpassive. We show
the lack of passivity by noting that the passivity condition (7),
for an input a(7) that vanishes for 7 € (—o0, t], reads

t—2t,
—F%/ a’(T)dr > 0.
t

This condition is never satisfied because of the negative sign in
front of the certainly positive integral. This example also shows
that any passivity violation can be highlighted or detected by
choosing an appropriate input that results in a negative absorbed
energy.

IV. LAPLACE DOMAIN

The Laplace transform is the natural tool for the analysis of
LTI systems, since it transforms differential time-domain oper-
ators into algebraic s-domain operators. In Laplace domain, (1)
becomes

Wi(s) = H(s)X(s) ©

where H(s) represents the system transfer function.

In this section, we derive the conditions for stability, causality,
and passivity in the Laplace domain. However, we should be
careful in using the appropriate definition of the transform. In
fact, the widely used unilateral Laplace transform, defined as

“+o0
Loy = [ pwe <t (10)
0

is not appropriate for our analysis, since it neglects by construc-
tion any part of the signal for £ < 0. All signals are automati-
cally treated as causal, hence no conditions for causality can be
inferred if definition (10) is used. If we want to derive suitable
conditions for causal systems, it is necessary to extend the time
integration down to —oo, by using the bilateral Laplace trans-
form.

A. Bilateral Laplace Transform

The bilateral Laplace transform is defined as [28]

400
F(s) = L{f(t)} = / fetd

oo

(@) (b)

Fig. 5. ROC of bilateral Laplace transforms (a) L, { f1 ()} and (b) Ly { f2(¢)}
as in Example IV.1.

where s = o + jw. The key difference4 between bilateral and
unilateral Laplace transform is the importance of the region of
convergence (ROC), i.e., the set of s values for which the inte-
gral in (11) converges absolutely. We illustrate this via a simple
example.

Example IV.1: Consider the two distinct functions fi(t) =
ePlu(t) and fo(t) = —ePtu(—t), where p is a real quantity. A
direct calculation from (11) leads to

Lo{f1(t)} = F1(s) = ﬁ;
Lo{fa(t)} = Fa(s) = ﬁ:

ROC: Re{s} >p (12)

ROC:Re{s} <p (13)
so that the actual transformed functions take identical expres-
sions. Therefore, the only way to discriminate them is the
knowledge of their respective ROCs, depicted in Fig. 5.

We will show that the ROC plays a fundamental role for the
characterization of both causality (f; is causal and f5 is not)
and stability. For completeness, we report four general ROC
properties, clearly verified for the above example.

1) ROC is always, in the complex s = ¢ + jw plane, a strip

parallel to the imaginary axis.

2) If a function f(t) vanishes for ¢ < #, its ROC is a half-

plane open on the right, i.e., Re{s} > o for some oy.

3) F(s) is analytic’ inside its ROC.

4) ROC is bounded on its left and right by the singularities of
F(s) (poles for lumped systems).

Although inversion of (11) can be computed via line integra-
tion within the ROC [28], inverse Laplace transform is usually
obtained (at least for lumped systems) by partial fractions de-
composition, as shown in the following example.

Example VI.2: The function F(s) = 1/((s+1)(s+2)) with
ROC -2 < Re{s} < —1 is decomposed as

1 1 1

— _ 14
(s+1)(s+2) s+1 s+2 (14
S—~— S—~—
Re{s}<—1 Re{s}>—-2

The regions of convergence of the two partial fractions have to
be chosen such that their intersection is the ROC of F'(s). Ac-
cording to the above-mentioned properties, the possible ROCs
for the first term (1) /(s + 1) are Re{s} < —1 and Re{s} > —1
and, for the second one, are Re{s} < —2 and Re{s} > —2.

“Bilateral Laplace transform (11) has the same properties of the unilateral one
[28], except for the transform of a differentiated signal, which turns out to be
L.{(d/dt)f(t)} = sF(s).

SA function F'(s) of a complex variable s is analytic in a region €2 if it has
no poles nor other singularities (e.g., branch points) in €2.
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The individual ROCs reported in (14) are the only combina-
tion which is compatible with the ROC of the original function.

The inverse Laplace transform is then f(t) = —e tu(—t) —
e~ 2tu(t).

B. Causality

In a causal system, since each element of h(¢) is vanishing
for negative time, the ROC for each of the elements of H(s) is
a half-plane open on the right. However, this condition is not
sufficient for causality. The following theorem [29] provides a
precise characterization.

Theorem IV.1: A signal h(t) is vanishing for ¢ < 0 if and
only if its bilateral Laplace transform:

1) is defined and analytic in a half-plane Re{s} > oy;

2) grows not faster than a polynomial for Re{s} > oy.

The importance of the two conditions stated by this theorem is
highlighted by the following two examples.

Example VI.3: The Laplace transforms Fj(s) and F5(s) of
Example VI.1 clearly show that a ROC open on the right is nec-
essary for causality. The first function is defined for Re{s} > p
and is associated to a time-domain signal fi(t) = ePtu(t)
that vanishes for ¢ < 0. Conversely, F»(s), in spite of sharing
the same mathematical expression of Fj(s), is defined in a
completely different ROC and does not satisfy the condi-
tions stated by Theorem IV.1. Its inverse Laplace transform

f2(t) = —ePtu(—t) is thus a noncausal signal.
Example 1V.4: The scattering matrix of the circuit in Fig. 4 is
_ R—-Ry

S(s) =Tge 2%, Tg

R+ Ry ()
and is defined and analytic over the entire complex s plane. Con-
sequently, it satisfies the first condition stated in Theorem IV.1
whatever to is; however, S(s) is causal only if o > 0, re-
quiring that the exponential factor represents a true delay and
not a noncausal anticipation. In the latter case with tg < 0, the
second condition of Theorem IV.1 is obviously violated since
S(s) grows exponentially for Re{s} > 0.

C. Stability

The ROC associated to a system transfer function is impor-
tant to ascertain stability. We have the following theorem (for
lumped systems).

Theorem IV.2: A system is stable according to Definition
I1.2 if and only if: 1) the ROC associated to its transfer ma-
trix H(s) includes the imaginary axis and 2) H(co) is bounded.

This condition is quite different from the more practical rule
normally employed by engineers, who usually test stability by
checking that all the system poles have negative real part. For
causal systems, both criteria are equivalent. In fact, since the
ROC for any causal system is open on the right and is bounded
on the left by the system singularities, when these singularities
are confined to the left-hand plane, the ROC will necessarily
include the imaginary axis, as shown in Fig. 6. For noncausal
systems, however, only the analysis of the region of convergence
allows us to prove stability, as shown in the next example.

Theorem II1.1: Consider the impulse responses

hi(t) = ePtu(t)

1

Im{s}

Fig. 6. When a causal transfer function has all singularities confined in left-
hand plane, ROC surely includes imaginary axis.

1
Bl ==

ho(t) = —ePtu(—t) ROC: Re{s} < p.
As already discussed in Example III.1, hq(t) is stable only if
p < 0, in which case the ROC includes the imaginary axis.
Since hq(t) is causal, the stability condition is thus equivalent
to requiring that the system pole lies in left hand plane. When
p > 0, the ROC does not include the imaginary axis and h4 (¢) is
unstable. We have a different situation for the noncausal impulse
response hs(t), which is stable when p > 0, i.e., when its ROC
includes the imaginary axis.

Example IV.6: The admittance of the LC resonator depicted
in Fig. 3(b) is

1 S
(S) - L 82 + 1

LC

ROC: Re{s} > 0 (16)
where the ROC has been chosen open on the right in order to
insure causality. In this case, the ROC does not include the
imaginary axis, where the two system poles s = =+j/ VLC
are located. Therefore, according to Theorem IV.2, the system
is not BIBO stable, as reported also in Example III.2. This ex-
ample confirms that systems with purely imaginary poles are a
boundary case for stability, and the adopted definition of BIBO
stability rules out these systems. Under a practical standpoint,
we believe that this definition satisfies the theoretical need of a
design engineer, since lossless resonant structures never occur
in practice due to the unavoidable presence of losses. In addi-
tion, any model which has poles on the imaginary axis may be-
come critical under certain excitations and should be carefully
avoided.

D. Passivity

The passivity conditions in Laplace domain depend on the
adopted representation. In the impedance or admittance cases
we have [26].

Theorem IV.3: An impedance matrix Z(s) represents a pas-
sive linear system if and only if:

1) each element of Z(s) is defined and analytic in Re{s} > 0;

2) ZH(s) + Z(s) is a nonnegative-definite matrix® for all s

such that Re{s} > 0;
3) Z(s*) = Z*(s).
The superscripts * and  denote the complex conjugate and
transpose conjugate, respectively. Note that the second condi-
tion generalizes for the matrix case the requirement that a pas-
sive one-port impedance must have positive real part. The third
condition ensures that the associated impulse response is real.

6A complex Hermitian matrix A = A ¥ is nonnegative-definite if x*/ Ax >
0 for all complex vectors x # 0.
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The first condition is related to causality and stability, since it
requires a ROC that is open on the right and touching the imagi-
nary axis. In fact, it is possible to prove that the three above con-
ditions for passivity always imply causality. The first condition
also implies BIBO stability, provided that the system has no sin-
gularities on the imaginary axis (i.e., purely imaginary poles).
Remark IV.1: From the above discussion, it appears evident
that passivity is the strongest requirement for the well-posed-
ness and physical consistency of a given model, since passivity
implies both causality and stability.
Example IV.7: The impedance of the RC circuit shown in
Fig. 3(a) (with positive R and C) is
1 1
2(5) = Cs+ -

RC

1
ROC: Re{s} > ——

e a7

and clearly satisfies the first and third conditions reported in
Theorem IV.3. The second condition reads

Z(s)+ 27 (s) = = —LBC_ >

where s = o + jw and is satisfied because, for Re{s} = o > 0,
all quantities are positive.

Example IV.8: A similar calculation proves that the admit-
tance function (16) of the LC resonator in Fig. 3(b) is passive.
In fact, the second condition of Theorem IV.3 becomes

(0% +w? + %)
e

Y(s) 4V (s5) = 2 >0

and is satisfied for Re{s} = o > 0.

For the scattering representation we have a similar result [26].

Theorem IV.4: A scattering matrix S(s) represents a passive
linear system if and only if:

1) each element of S(s) is analytic in Re{s} > 0;

2) I — S*(5)S(s) is a nonnegative-definite matrix for all s

such that Re{s} > 0;

3) S(s*) = S*(s).

A matrix fulfilling these three conditions is said to be bounded
real. Conditions 1) and 3) have the same meaning as in The-
orem IV.3. Condition 2) is basically a bound for S(s), which
generalizes the basic condition on passive one-port networks
having a reflection coefficient not larger than one. An alternative
and equivalent condition requires that ||S(s)]|2, i.e., the largest
singular value of S(s), does not exceed one in the right-hand
plane.

Example IV.9: The scattering coefficient (15) of the circuit
depicted in Fig. 4 satisfies the passivity constraints only if R >
0. In fact, conditions 1) and 3) of Theorem IV.4 hold indepen-
dently of R, while condition 2) holds only if R > 0, since it
requires that

|FR|26—4too— S 1

for all ¢ > 0. If R is negative, then |[T'g| > 1 and the above
inequality does not hold for small values of o.

V. FREQUENCY DOMAIN

The Laplace-domain conditions reviewed in Section IV are
exhaustive but may be difficult to check, since they require

testing the entire or at least half of the complex s-plane.
However, these results may be restricted to the imaginary axis
s = jw only, by considering the standard Fourier transform

F(jw) = F{f(1)} = /

— 00

+oo .

f(t)e 9« dt (18)
instead of the Laplace transform. Of course, use of Fourier trans-
form makes sense only if the integral (18) exists (converges).
The resulting frequency-domain equivalent of (1) is

W (jw) = H(jw)X(jw) (19)
and makes sense only when the Fourier transform exists for both
the system impulse response h(t) and the excitation signal x(t).
It is well known that H(jw) is directly related to the sinusoidal
steady-state response and it can be directly measured.

A. Stability

Fourier analysis is always possible for stable systems, be-
cause if (3) is satisfied, the integral in (18) converges absolutely.
Difficulties arise for unstable systems, as shown in the following
example.

Example V.1: The frequency-domain impedance representa-
tion of the circuit in Fig. 3(a) is

1 1 1

Jw—=p

Z(jw) = 4 RC c

(20)

and exists only if p < 0. In fact, the system impulse response is
AeP'u(t) and cannot be Fourier transformed via (18) if p > 0,
consistent with the fact that a sinusoidal steady state is never
established in such an unstable system.

For unstable systems, the Laplace transform is a more appro-
priate tool, since it can be defined regardless of stability, as dis-
cussed in Section I'V. Bilateral Laplace and Fourier transforms
can both be defined if the ROC includes the imaginary axis.

B. Causality

Causality imposes strong conditions on the frequency re-
sponse of a system. Denoting as h(t) a causal impulse response
(vanishing for £ < 0), we have

h(t) = sign(t)h(t)

where sign(t) is the sign function that equals 1 for ¢ > 0 and
—1 for ¢t < 0. Applying Fourier transform? one obtains

FR(D) = 5 Flsian()} = F(h(1)}

since the transform of the product sign(¢)h(¢) leads to a convo-
lution. A direct calculation leads to
1 +oo H(i /

H(iw) = —
(jw) P —

1)

J —oo

where the integral converges despite of the integrand singularity
for w’ = w, because the principal value

+oo w—e +oo
by /—oo - ‘1_1’%1+ |:/—oo +/w+e :|

7Mathematically, this calculation has to be done with distributions.

(22)
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is taken. In order to appreciate the strong implications of (21),
it is useful to divide it into real and imaginary parts

“+o0 /
Uw) = L pv / Viw ), d’ (23a)
s Jioo W—w
Eee] /
V(w) = =L pv / L“’), d’ (23b)
s Jioo W—w

where H(jw) = U(w) + jV(w). These equations, known as
Kramers—Kronig dispersion relations [31]-[34], are valid for
every causal system and state that the frequency response real
and imaginary parts are not independent. Kramers—Kronig rela-
tions are necessary and also sufficient for causality, as stated by
the next theorem.

Theorem V.1: If h(t) admits a Fourier transform, the fol-
lowing facts are equivalent.

1) h(t) = 0fort < 0;

2) H(jw) is the limit, as ¢ — 0, of a function H (s) defined

in Re{s} > 0 and here analytic and of polynomial growth;

3) H(jw) = F{h(t)} satisfies Kramers-Kronig relations.

This interesting result, due to Titchmarsh [34] and general-
ized by Beltrami [30], summarizes and relates the conditions
for causality in time, Laplace, and frequency domains.

Example V.2: We consider the frequency response

1 —p —w

Hliw) — _ .
(jw) jw—7p w2+p2+']w2—|—]72

—— ——
U(w)

(24)
V(w)

with p € R and test whether its real part U(w) and imaginary
part V(w) satisfy dispersion relations. The integral in (23a) can
be computed by using the following decomposition into partial
fractions:
—w' 1

w/2+p2w_w/

—w 1

w2+p2w_wl

w W N p? 1
w2+p2w12+p2 w2+p2wl2+p2'

This allows us to write

+o0 —' dw’ p2 +oo dw'’
4 = \% J—
p e P Pw—w D tp? p e W21
since the first two partial fraction terms above are odd-sym-

metric, thus leading to a vanishing principal value integral. Fi-
nally, we have

Loy [T gyl

2oy = .
7rp w—w p2 + w?

(25)
This computed real part matches (24), i.e., the system is causal
according to (23a), only if p < 0. Of course, this is consistent
with the fact that the extension of H (jw) to a Laplace transform
in the complex s-plane reads

1
H(s)= —— ROC:Re{s} >p, p<0
s—p
because the ROC must include the imaginary axis where the
original frequency response is defined. Conversely, if p > 0 the

frequency response is noncausal since:

1) dispersion relations are not satisfied;
2) the extension of H(jw) to a Laplace transform in the com-
plex s-plane reads

ROC: Re{s} <p, p>0
and the ROC is not a half-plane open on the right;

3) the associated time-domain signal is h(t) = —ePtu(—t),
which is obviously noncausal.

C. PFassivity

The Laplace-domain passivity conditions stated by Theo-
rems IV.3 and IV .4 have to be verified in the entire half-plane
Re{s} > 0. We report here some passivity conditions that
practically require testing only the imaginary axis s = jw.

The following theorem [26] applies only to lumped systems,
whose transfer functions are always rational.

Theorem V.2: A rational matrix Z(s) is the impedance of a
passive lumped system if and only if:

1) each element of Z(s) is defined and analytic in Re{s} > 0;

2) Z"(jw) + Z(jw) is a nonnegative-definite matrix for all
w € R, except for simple poles jwy of Z(s), where the
residue matrix must be nonnegative definite;

3) Z(—jw) = Z*(jw);

4) asymptotically, Z(s) — As in Re{s} > 0, where A is a
real, constant, symmetric, nonnegative-definite matrix.
A similar result holds for the admittance matrix Y (s).

Example V.3: The impedance of the circuit depicted in

Fig. 3(b) is
Z(s) =sL !

(s) =L+ sC
This is a rational function, so we can apply Theorem V.2 to
ascertain passivity. The first condition of the theorem is satisfied
because Z(s) is analytic in the whole complex plane except for
s = 0; condition 2) holds because for s = jw one has Z (jw)+
Z(jw) = 0. Condition 3) is satisfied as well as condition 4),
since asymptotically Z(s) — sL.

The corresponding result of Theorem V.2 for the scattering
representation (valid for both lumped and distributed systems)
reads as follows [26].

Theorem V.3: A scattering matrix S(jw) represents a passive
linear system if and only if:

1) dispersion relations (23) hold;

2) I - SH(jw)S(jw) is a nonnegative-definite matrix for all
w;

3) S(—jw) = S*(jw).

Note that this theorem involves only conditions restricted to the
imaginary axis s = jw. It is remarkable that the combined con-
ditions 1) (dispersion relations) and 2) (unitary boundedness)
are sufficient to control the function behavior in Re{s} > 0, i.e.,
passivity. Therefore, it appears that the scattering representation
is more appealing for practical use in data and model verifica-
tion. Of course, if S(s) is rational and analytic in Re{s} > 0,
only conditions 2) and 3) are necessary, since dispersion rela-
tions are automatically satisfied.

Example V.4: The second condition of Theorem V.3, written
for the scattering parameter of the circuit in Fig. 4

ROC: Re{s} > 0. (26)
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—2jwty

S(jw) I'r =

=Tge Q27)

reads

I-SY(jw)S(jw)=1—

=1-T%>0.

F%erwtO e—2jwt0

When |[T'g| < 1 this inequality is always satisfied, indepen-
dently of #5. However, if {5 < 0 the system is not causal (as
discussed in Example II1.4) and hence nonpassive. This example
points out that condition 2) (unitary boundedness) is not suffi-
cient to ascertain the passivity of distributed systems. It is nec-
essary, as stated by Theorem V.3, to also ensure that dispersion
relations are satisfied, i.e., that the system is causal.

VI. EXAMPLES

A. Analytic Example

We start with a simple analytic example. Despite its apparent
triviality, this example is quite significant since it allows us to
pinpoint via analytic derivations a typical source of problems in
real-life modeling and simulation tasks. We consider the scat-
tering frequency response

S(jw) = —

— 28
5o (28)

and we want to derive an equivalent model that can be used in a
time-domain simulation tool.

1) Causal and Unstable Model: The typical approach for
macromodel derivation is to fit the data with a rational expres-
sion in the Laplace domain. In this case, an error-free fit is pos-
sible and leads to the expression

1

s (29)

S(s) =
In fact, (29) reduces exactly to (28) when evaluated for s = jw.
The model poles are p = £1, with one unstable pole with posi-
tive real part. The corresponding impulse response is exponen-
tially unstable. Fig. 7 provides a further illustration of this in-
stability by depicting (continuous line) the results of a computer
simulation of the model (29) when a square pulse is applied as
input. It is clear that any practical use of this model is impos-
sible, even if the match to the data is perfect.
2) Stable and Noncausal Model: An alternative approach to
compute the time-domain response of (28) under a given exci-
tation z(¢) is via inverse Fourier transform

w(t) = FH{S(jw) X (jw)}, X (jw) = F{z(t)}.

The result for a square pulse input is depicted with a dashed
line in Fig. 7. It is clear that the model is not causal, but stable.
Also in this case, if proper care is taken in computing the inverse
Fourier transform, the computed response is virtually error free.

3) Discussion: It appears that two models with very different
behavior and characterized by different fundamental properties
are compatible with (28). The main reason for this inconsistency
is the lack of causality of the original data (28). In fact, this

(30)

1.5 T T T :
5 1
g
= 05} .
(—)2 -1 0 1 2 3
Time
0'5 -----------------
.S 0 oo T T T S|
=3
>
O -0.5}~|—causal, unstable - oo 1
----- non—causal stable
12 2 3
Time

Fig.7. Response of two different time-domain models of (28) to a square pulse.
Continuous line refers to (29), and dashed line is obtained via inverse Fourier
transform.
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Fig. 8. Graphical illustration of ROC for two models of Section IV-A.

frequency response is not causal because it violates Theorem
V.1, whatever condition is considered.
1) The inverse Fourier transform of (28) is

s(t) = FH{S(jw) = 5¢ ™"

which does not vanish for ¢ < 0.
2) The extension of S(jw) to the entire s-plane,

1

S =19

ROC: —1 < Re{s} <1
is not defined in the half-hand plane Re{s} > 0 (note that
the ROC has to be defined so that it includes the imaginary
axis).

3) The frequency response itself does not satisfy the disper-
sion relations (23). In fact, a straightforward calculation (as
in Example V.2) reveals that S(jw) requires an associated
imaginary part —w/(1 4+ w?) in order to be causal.

A clear picture of the situation is provided by Fig. 8. Each of the
two models is characterized by a different ROC, and we know
from Section IV that the ROC determines directly the stability
and the causality properties of the model. Due to the singularity
at s = 1, a simultaneous enforcement of stability and causality
is not possible.

In summary, given a noncausal dataset as in (28), the objective
of computing a causal and stable model becomes an ill-posed
problem. It is of course possible to compute a rational approx-
imation by constraining all poles to be stable, so that the ROC
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TABLE III
FAILURE OF A CAUSAL AND STABLE RATIONAL MODEL FIT TO NONCAUSAL
DATASET OF SECTION VI-A

Model order | Maximum error
4 0.523
8 0.416
12 0.417
16 0.422
20 0.422

will be open on the right and include the imaginary axis. Unfor-
tunately, such a fit will be very poor and the accuracy will not
be under control. Table III reports the results of VF applied to
this example, with a varying number of (strictly stable) poles. It
is clear that the approximation does not converge to the data, as
expected.

We conclude this example with a remark. Most time-domain
circuit solvers adopt a forward time-stepping procedure to com-
pute the solution. In this framework, it is implicitly assumed
that the solution at a given time iteration is only influenced by
the previous and already computed times, which is essentially
the same requirement of causality. Hence, causality is a must
for each model in the network. Equivalently, noncausal models
are not compatible with time-stepping solvers. In addition, even
the concept of initial conditions (required for setting up the time
iterations) may become meaningless or difficult to apply when
causality is not assumed a priori.

B. Revisiting Test Case of Section II

We reconsider now the example reported in Section II, for
which an accurate rational fit with stable poles only was not
possible. This is actually the same scenario that was encoun-
tered in the simple example of Section VI-A. We may argue
that the main reason is hidden in some causality violations of
the raw frequency response. However, in this case only a set of
tabulated frequency points are available, and no analytic expres-
sions will help us in the verification of this hypothesis. This is
the practical situation that a design engineer would actually face
with no source of information available other than the results of
his measurement or field simulation.

Among the various conditions for testing causality that were
reviewed in this paper, it appears that the direct application
of the dispersion relations (23) is the only feasible option in
this case. Due to the singular nature of the integrals and to the
availability of samples over a limited frequency band, the direct
computation of (23) may be very inaccurate. This problem has
been addressed in [40] and [41], where an accurate and robust
methodology to ascertain the causality of tabulated frequency
responses is developed, based on a generalized form of the
Hilbert transform. We applied this method to the available
frequency data, and the results are shown in Figs. 9 and 10. The
solid lines represent the original data, while the gray shaded
areas are frequency-dependent regions where the data should
lay in order to satisfy causality (details can be found in [40]).
When a data point is outside these areas we are sure that a
causality violation is present.

These results confirm that the failure reported in Section II
is really due to causality violations in the data. However, the
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Fig. 9. Check for causality of 51, based on computation of generalized
Hilbert transform. Since continuous line (representing raw data) is outside gray
area (computed Hilbert transform inclusive of a frequency-dependent error
bar), dataset is noncausal.
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Fig. 10. As in Fig. 9, but for Ssy4.

detection of such violations requires a sophisticated numerical
tool. This example should illustrate how critical it may be to
handle a flawed dataset. The symptoms of data inconsistencies
only appear when trying to build a macromodel, and it may not
be clear to the engineer what is the real cause of the problems. It
is also evident that any dataset should be certified for causality
before attempting any macromodeling and simulation step.
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Fig. 11. Layout of PCB with coupled interconnect structure under investiga-
tion. Port numbering is also specified.
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Fig. 12. Scattering parameters S (near-end crosstalk) and .S 3 (transmission)
for two datasets of Section VI-C .

C. PCB Interconnect

We consider in this section a coupled interconnect structure
on a printed circuit board (PCB), whose geometry is depicted
in Fig. 11. We built a test board and we performed two sets
of measurements of the four-port scattering matrix of the inter-
connect. The first measured dataset is valid and accurate. The
second dataset is instead flawed by an imperfect calibration.
Hence, we denote the former dataset as “good” and the latter
as “bad.” Magnitude and phase of two scattering matrix entries
for the two measurements are compared in Fig. 12. Fig. 13 de-
picts the frequency-dependent maximum singular value of the
two scattering matrices, showing that the “bad” dataset is also
violating passivity (the maximum singular value is larger than
one), whereas the “good” dataset is passive.

We now attempt the construction of a rational macromodel for
these two datasets with a varying number of poles. The results
obtained with VF are reported in Table IV, where three sets of
models are compared. The models for the “good” and passive
dataset are also passive and the VF error converges when the
number of poles is increased. The models for the “bad” dataset
are also convergent, but a passivity check, here performed using
[54], shows that also the models are nonpassive. This is ex-
pected, since a model that closely matches a nonpassive dataset
will almost surely be nonpassive. Finally, the set of models in
the last column is obtained from the “bad” dataset by enforcing
passivity, as in [54]. All these passive models are inaccurate with
respect to the original data. This is also expected, since a pas-
sive model cannot match a nonpassive dataset better than a given
threshold accuracy, which is of course related to the amount of
passivity violation in the data. As a confirmation, the model ac-
curacy seems to be limited to a value which is nearly the same
as max,,{||S(jw)|| — 1} (see Fig. 13). Note also that any other

S 1 Sy L S
c
X
E
081
@ —Good data
---Bad data
0642 0.4 0.6 0.8 1
Frequency [GHz]

Fig. 13. Norm of S matrix: values greater than one denote passivity violations.

TABLE 1V
MODEL ERRORS AS A FUNCTION OF NUMBER OF POLES

Model Passive data | Non-passive data | Non-passive data,
order & models & models passive models
6 0.240 0.280 0.23
12 0.020 0.020 0.11
18 0.012 0.017 0.13

passivity enforcement algorithm, such as [45], [52], will pro-
duce similar results.

The measured data for this example are only available from

a minimum frequency fi, = 130 MHz and not from dc. This
fact has two important implications.

1) If we test data causality using the Kramers—Kronig disper-
sion relations (23), we need to take into account the un-
avoidable bias due to the missing samples. This is indeed
the main motivation that led to the advanced algorithms
in [40], [41], which explicitly deal with missing samples
by computing an equivalent “numeric resolution” of the
causality check. See [40] and [41] for details.

2) Any model derived from this data can only be accurate
where frequency samples are available. Therefore, the
model behavior from dc up to fi,in is not under control,
unless some additional assumptions on the missing data
are made. This may lead to spurious passivity violations
in the model, which are located at frequencies where raw
data samples are missing.

In case only a “bad” nonpassive dataset is available, we are

faced with three possibilities:

1) throw away the flawed dataset and repeat the measurement;

2) accept the accurate but nonpassive macromodel;

3) accept a passive macromodel at the cost of a reduced accu-
racy with respect to the available data.

It turns out that the first choice is the right one. In fact, an ac-
curate but nonpassive model may lead to an unstable network
even when suitable passive terminations are considered. This
is actually not far from real life experience, and we show this
for the nonpassive model with 18 poles. When we terminate the
interconnect model with identical loads at its four ports with
structure Ry || (R2 + jwL) (component values: Ry = 1.93 k{2,
Ry = 1.29 Q,L = 9.18 nH), we get the voltage waveform
reported in Fig. 14, which confirms the loss of the network sta-
bility, caused by a pair of complex-conjugate poles with positive
real part, p; o = 0.037 & 55.40 Grad/s. Thus, accepting non-
passive models involves a necessary risk that the system-level
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Fig. 14. Loss of stability of nonpassive model when connected to simple passive RL loads.

simulation employing the model may fail. The third choice has
also some drawbacks. In fact, even if the model is passive, we
will never know how closely it represents the real intercon-
nect (which is certainly a passive structure), since it is derived
from a dataset that does not represents correctly the fundamental
physics of the system.

VII. SUMMARY AND DISCUSSION

We have reviewed in this paper the fundamental properties
of stability, causality, and passivity, and we have shown all im-
portant interrelations between them in the time, Laplace, and
Fourier domains. These concepts have been used to interpret and
justify common difficulties encountered when trying to derive
macromodels from tabulated frequency data. We have shown
with several test cases that whenever raw frequency data do not
fulfill these fundamental properties, a failure in the macromod-
eling process must be expected.

The main conclusion of this work is twofold. First, it is
mandatory that any dataset be certified to be self-consistent,
causal, and passive before proceeding to further modeling
steps. Second, any macromodeling algorithm must preserve
such properties in order to avoid flawed simulation results. We
conclude this paper by pointing the reader to a set of signif-
icant references on both data checking and consistent model
extraction techniques.

We have shown that passivity is the strongest requirement,
since it implies both causality and stability. When dealing with
(scattering) frequency-domain tabulated data, we can apply
Theorem V.3 to check for passivity. Unitary boundedness of
the scattering matrix (condition 2) is easy to test, at least for the
available samples. Conversely, checking dispersion relations
(condition 1) is much more difficult. Only a few authors have
considered this problem addressing the serious issues due to
the tabulated nature of real data [35]-[39]. More recent results
on robust causality check for bandlimited tabulated data can be
found in [40] and [41].

The stability and the causality of rational (lumped) models
based on poles-residues, poles-zeros, or state-space forms are
easy to enforce. It is indeed sufficient to make sure that all poles
have a (strictly) negative real part, as discussed in Section I'V.

The more difficult passivity enforcement reduces in this case to
condition 2) of Theorems IV.3 and IV .4. For small-sized models
the best approach is provided by a convex formulation of the
passivity constraints via the positive real (PR) or the bounded
real (BR) lemmas [42], [43], since these forms allow application
of convex programming techniques for passivity enforcement
[44]1-[47]. Such techniques are guaranteed to find the optimal
solution. Unfortunately, their computational complexity seri-
ously impairs application to medium and large-sized models.
These cases can be handled via suboptimal techniques based on
linear or quadratic optimization [48]-[52] or Hamiltonian ma-
trix perturbation [53]-[56].

Delay-based models (for, e.g., transmission lines) deserve
special care [15]-[24]. Some techniques are available for model
passivity enforcement by construction [21]. However, model
size may grow for large delays, and model efficiency may be
compromised. Very efficient models are available [15]-[20],
but without the guarantee of passivity. Passivity enforcement
for such models is still an open problem for future research
[23], [24].

ACKNOWLEDGMENT

The authors are grateful to Dr. I. Kelander (NOKIA) for pro-
viding the data used in Section II, and to their colleagues I.
Stievano, C. Siviero, V. Teppati, and G. Dassano for supplying
the measurements used in Section VI-C.

REFERENCES

[1] M. Nakhla and R. Achar, “Simulation of high-speed interconnects,”
Proc. IEEE, vol. 89, no. 5, pp. 693-728, May 2001.

[2] M. Celik, L. Pileggi, and A. Obadasioglu, IC Interconnect Analysis.
Boston, MA: Kluwer, 2002.

[3] B. Gustavsen and A. Semlyen, “Rational approximation of frequency
domain responses by vector fitting,” IEEE Trans. Power Delivery, vol.
14, no. 3, pp. 1052-1061, Jul. 1999.

[4] A.Semlyen and B. Gustavsen, “Vector fitting by pole relocation for the
state equation approximation of nonrational transfer matrices,” Circuits
Syst. Signal Process, vol. 19, no. 6, pp. 549-566, 2000.

[5] B. Gustavsen and A. Semlyen, “A robust approach for system identifi-
cation in the frequency domain,” IEEE Trans. Power Delivery, vol. 19,
no. 3, pp. 1167-1173, Jul. 2004.

[6] C.K.Sanathanan and J. Koerner, “Transfer function synthesis as a ratio
of two complex polynomials,” IEEE Trans. Automat. Contr., vol. 8, no.
1, pp. 56-58, Jan. 1963.



TRIVERIO et al.: STABILITY, CAUSALITY, AND PASSIVITY IN ELECTRICAL INTERCONNECT MODELS 807

(71

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

W. Beyene and J. Schutt-Ainé, “Accurate frequency-domain modeling
and efficient circuit simulation of high-speed packaging interconnects,”
IEEE Trans. Microwave Theory Tech., vol. 45, no. 10, pp. 1941-1947,
Oct. 1997.

K. L. Choi and M. Swaminathan, “Development of model libraries
for embedded passives using network synthesis,” IEEE Trans. Circuits
Syst. 11, vol. 47, no. 4, pp. 249-260, Apr. 2000.

M. Elzinga, K. Virga, L. Zhao, and J. L. Prince, “Pole-residue formu-
lation for transient simulation of high-frequency interconnects using
householder LS curve-fitting techniques,” IEEE Trans. Comp. Packag.
Manufact. Technol., vol. 23, no. 1, pp. 142-147, Mar. 2000.

M. Elzinga, K. Virga, and J. L. Prince, “Improve global rational ap-
proximation macromodeling algorithm for networks characterized by
frequency-sampled data,” IEEE Trans. Microwave Theory Tech., vol.
48, no. 9, pp. 1461-1467, Sep. 2000.

J. Morsey and A. C. Cangellaris, “PRIME: Passive realization of in-
terconnects models from measures data,” in Proc. IEEE 10th Topical
Meeting Electr. Perf. of Electron. Packag., 2001, pp. 47-50.

S. Grivet-Talocia and M. Bandinu, “Improving the convergence of
vector fitting in presence of noise,” IEEE Trans. Electromagnetic
Compatibility, vol. 48, no. 1, pp. 104-120, Feb. 2006.

D. Deschrijver and T. Dhaene, “Broadband macromodeling of passive
components using orthonormal vector fitting,” Electron. Lett., vol. 41,
no. 21, pp. 1160-1161, Oct. 2005.

IdEM 2.4, [Online]. Available: http://www.emc.polito.it

F. H. Branin, “Transient analysis of lossless transmission lines,” Proc.
IEEE, vol. 55, pp. 2012-2013, 1967.

A.J. Gruodis and C. S. Chang, “Coupled lossy transmission line char-
acterization and simulation,” IBM J. Res. Development, vol. 25, pp.
25-41, 1981.

D. B. Kuznetsov and J. E. Schutt-Aine, “Optimal transient simulation
of transmission lines,” IEEE Trans. Circuits Syst.—I, vol. 43, no. 1, pp.
110-121, Jan. 1996.

S. Lin and E. S. Kuh, “Transient simulation of lossy interconnects
based on recursive convolution formulation,” IEEE Trans. Circuits
Syst.—I, vol. 39, no. 6, pp. 879-892, Jun. 1992.

A. Semlyen and A. Dabuleanu, “Fast and accurate switching transient
calculations on transmission lines with ground using recursive convolu-
tion,” IEEE Trans. Power Apparatus Syst., vol. 94, pp. 561-571, 1975.
S. Grivet-Talocia, H. M. Huang, A. E. Ruehli, F. Canavero, and I. M.
Elfadel, “Transient analysis of lossy transmission lines: An effective
approach based on the method of characteristics,” IEEE Trans. Ad-
vanced Packaging, vol. 27, no. 1, pp. 45-56, Feb. 2004.

N. Nakhla, A. Dounavis, R. Achar, and M. S. Nakhla, “DEPACT: Delay
extraction-based passive compact transmission-line macromodeling al-
gorithm,” IEEE Trans. Adv. Packaging, vol. 28, no. 1, pp. 13-23, Feb.
2005.

R. Mandrekar and M. Swaminathan, “Causality enforcement in tran-
sient simulation of passive networks through delay extraction,” in Proc.
9th IEEE Workshop Signal Propagation on Interconnects, Garmisch-
Partenkirchen, Germany, May 10-13, 2005.

E. Gad, C. Chen, M. Nakhla, and R. Achar, “A passivity checking
algorithm for delay-based macromodels of lossy transmission lines,”
in Proc. 9th IEEE Workshop on Signal Propagation on Interconnects,
May 10-13, 2005, pp. 125-128.

E. Gad, C. Chen, M. Nakhla, and R. Achar, “Passivity verification
in delay-based macromodels of electrical interconnects,” IEEE Trans.
Circuits Syst.—I, vol. 52, no. 10, pp. 2173-2187, Oct. 2005.

A. H. Zemanian, “An N-port realizability theory based on the theory of
distributions,” IEEE Trans. Circuit Theory, vol. CT-10, pp. 265-274,
Oct. 1963.

M. R. Wohlers, Lumped and Distributed Passive Networks.
York: Academic, 1969.

D. C. Youla, L. J. Castriota, and H. J. Carlin, “Bounded real scattering
matrices and the foundations of linear passive network theory,” IRE
Trans. Circuit Theory, vol. CT-6, pp. 102—124, Mar. 1959.
A. V. Oppenheim and A. S. Willsky, Signals and Systems.
wood Cliffs, NJ: Prentice—Hall, 1983.

A. H. Zemanian, “Realizability theory for continuous linear systems,”
in Mathematics in Science and Engineering. New York: Academic,
1972, vol. 97, pp. XV-231.

E. J. Beltrami, “Linear dissipative systems, nonnegative definite dis-
tributional kernels, and the boundary values of bounder-real and pos-
itive-real matrices,” J. Math. Analysis Applic., vol. 19, pp. 231-246,
1967.

H. A. Kramers, “La diffusion de la lumiere par les atomes,” in Col-
lected Scientific Papers. Amsterdam, The Netherlands: North-Hol-
land, 1956.

R. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Amer.,
vol. 12, pp. 547-557, 1926.

New

Engle-

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42

[43]

[44]

[45

[46]

[47]

[48]

[49]

[50]

[51]

[52

[53]

[54]

[55]

[56]

N. M. Nussenzveig, Causality and Dispersion Relations. New York:
Academic, 1972.

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd
ed. London, U.K.: Oxford Univ. Press, 1948.

G. W. Milton, D. J. Eyre, and J. V. Mantese, “Finite frequency range
Kramers Kronig relations: Bounds on the dispersion,” Phys. Rev. Lett.,
vol. 79, pp. 3062-3065, 1997.

K. R. Waters, J. Mobley, and J. G. Miller, “Causality-imposed
(Kramers—Kronig) relationships between attenuation and dispersion,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 52, pp. 822-833,
2005.

K. F. Palmer, M. Z. Williams, and B. A. Budde, “Multiply subtractive
Kramers—Kronig analysis of optical data,” Appl. Opt., vol. 37, no. 13,
pp. 2660-2673, May 1998.

V. Lucarini, J. J. Saarinen, and K. Peiponen, “Multiply subtractive gen-
eralized Kramers-Kronig relations: Application on third-harmonic gen-
eration susceptibility on polysilane,” J. Chem. Phys., vol. 119, no. 21,
pp. 11 095-11 098, Dec. 2003.

F. M. Tesche, “On the use of the Hilbert transform for processing
measured CW data,” IEEE Trans. Electromagn. Compat., vol. 34, pp.
259-266, 1992.

P. Triverio and S. Grivet-Talocia, “A robust causality verification
tool for tabulated frequency data,” in Proc. 10th IEEE Workshop
Signal Propagation on Interconnects, Berlin, Germany, May 9-12,
2006.

P. Triverio and S. Grivet-Talocia, “On checking causality of bandlim-
ited sampled frequency responses,” in Proc. 2nd Conf. Ph.D. Research
in Microelectronics and Electronics (PRIME), Otranto, LE, Italy, June
12-15, 2006, pp. 5S01-504.

K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
Englewood Cliffs, NJ: Prentice—Hall, 1996.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, “Linear matrix
inequalities in system and control theory,” in SIAM Studies in Applied
Mathematics. Philadelphia, PA: STAM, 1994.

S. Boyd and L. Vandenberghe, Convex Optimization.
U.K.: Cambridge Univ. Press, 2004.

C. P. Coelho, J. Phillips, and L. M. Silveira, “A convex programming
approach for generating guaranteed passive approximations to tabu-
lated frequency-data,” IEEE Trans. Computed-Aided Design Integrated
Circuits Syst., vol. 23, no. 2, Feb. 2004.

H. Chen and J. Fang, “Enforcing bounded realness of S parameter
through trace parameterization,” in Proc. 12th IEEE Topical Meeting
Electrical Performance of Electronic Packaging, Princeton, NJ, Oct.
27-29, 2003, pp. 291-294.

B. Dumitrescu, ‘“Parameterization of positive-real transfer functions
with fixed poles,” IEEE Trans. Circuits Syst.—I, vol. 49, no. 4, pp.
523-526, Apr. 2002.

B. Gustavsen and A. Semlyen, “Enforcing passivity for admittance ma-
trices approximated by rational functions,” IEEE Trans. Power Syst.,
vol. 16, no. 1, pp. 97-104, Mar. 2001.

R. Achar, P. K. Gunupudi, M. Nakhla, and E. Chiprout, “Pas-
sive interconnect reduction algorithm for distributed/measured net-
works,” IEEE Trans. Circuits Syst. I, vol. 47, no. 4, pp. 287-301,
Apr. 2000.

D. Saraswat, R. Achar, and M. Nakhla, “Enforcing passivity for ra-
tional function based macromodels of tabulated data,” in Proc. 12th
IEEE Topical Meeting Electrical Performance of Electronic Packaging,
Princeton, NJ, Oct. 27-29, 2003, pp. 295-298.

D. Saraswat, R. Achar, and M. Nakhla, “A fast algorithm and practical
considerations for passive macromodeling of measured/simulated
data,” IEEE Trans. Components, Packaging and Manufacturing
Technol., vol. 27, pp. 57-70, Feb. 2004.

D. Saraswat, R. Achar, and M. Nakhla, “Global passivity enforcement
algorithm for macromodels of interconnect subnetworks characterized
by tabulated data,” IEEE Trans. VLSI Syst., vol. 13, no. 7, pp. 819-832,
Jul. 2005.

S. Grivet-Talocia, “Enforcing passivity of macromodels via spectral
perturbation of hamiltonian matrices,” in Proc. 7th IEEE Workshop on
Signal Propagation on Interconnects, Siena, Italy, May 11-14, 2003,
pp. 33-36.

S. Grivet-Talocia, “Passivity enforcement via perturbation of Hamil-
tonian matrices,” IEEE Trans. Circuits Syst.—I, vol. 51, no. 9, pp.
1755-1769, Sep. 2004.

S. Grivet-Talocia and A. Ubolli, “On the generation of large passive
macromodels for complex interconnect structures,” IEEE Trans. Adv.
Packaging, vol. 29, no. 1, pp. 39-54, Feb. 2006.

S. Grivet-Talocia, “Improving the efficiency of passivity compensation
schemes via adaptive sampling,” in Proc. 14th IEEE Topical Meeting
Electrical Performance of Electronic Packaging, Austin, TX, Oct.
24-26, 2005, pp. 231-234.

Cambridge,



808 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 30, NO. 4, NOVEMBER 2007

Piero Triverio (S’06) was born in Biella, Italy, in
1981. He received the Laurea Specialistica degree
(M.Sc.) in electronics engineering, in 2005, from the
Politechnic University of Turin, Italy, where he is
currently pursuing the Ph.D. degree.

His research interests include the modeling and
simulation of lumped and distributed interconnects
and numerical algorithms.

Mr. Triverio was the recipient of the INTEL Best
Student Paper Award presented at the IEEE 15th Top-
ical Meeting on Electrical Performance of Electronic
Packaging (EPEP 2006) and the OPTIME Award of the Turin Industrial Asso-
ciation. In 2005, he was selected for the IBM EMEA Top Student Recognition
Event.

Stefano Grivet-Talocia (M’98-SM’07) received
the Laurea and the Ph.D. degrees in electronic en-
gineering from the Politechnic University of Turin,
Italy.

From 1994 to 1996, he was at NASA/Goddard
Space Flight Center, Greenbelt, MD, where he
worked on applications of fractal geometry and
wavelet transform to the analysis and processing of
geophysical time series. Currently, he is an Associate
Professor of Circuit Theory with the Department
of Electronics, Polytechnic of Turin. His research
interests include passive macromodeling of lumped and distributed interconnect
structures, modeling, and simulation of fields, circuits, and their interaction,
wavelets, time-frequency transforms, and their applications. He is the author of
more than 80 journal and conference papers.

Dr. Grivet-Talocia served as Associate Editor for the IEEE TRANSACTIONS
ON ELECTROMAGNETIC COMPATIBILITY from 1999 to 2001.

Michel S. Nakhla (S5’73-M’75-SM’88-F’98)
received the M.A.Sc. and Ph.D. degrees in electrical
engineering from University of Waterloo, Ontario,
Canada, in 1973 and 1975, respectively.

From 1976 to 1988 he was with Bell-Northern Re-
search, Ottawa, Canada, as the Senior Manager of
the computer-aided engineering group. In 1988, he
joined Carleton University, Ottawa, Canada, as a Pro-
fessor and the holder of the Computer-Aided Engi-
neering Senior Industrial Chair established by Bell-
Northern Research and the Natural Sciences and En-
gineering Research Council of Canada. He is a Chancellor’s Professor of Elec-
trical Engineering at Carleton University. He is the Founder of the high-speed
CAD research group at Carleton University. He serves as a technical consultant
for several industrial organizations and is the principal investigator for several
major sponsored research projects. His research interests include modeling and
simulation of high-speed circuits and interconnects, nonlinear circuits, multidis-
ciplinary optimization, thermal and electromagnetic emission analysis, MEMS
and neural networks. Also, he has also served as a member of many Canadian
and international government-sponsored research grants selection panels.

Dr. Nakhla serves on various international committees, including the standing
committee of the IEEE International Signal Propagation on Interconnects Work-
shop (SPI), the technical program committee of the IEEE International Mi-
crowave Symposium (IMS), the technical program committee of the IEEE Top-
ical Meeting on Electrical Performance of Electronic Packaging and the CAD

committee (MTT-1) of the IEEE Microwave Theory and Techniques Society. He
is an Associate Editor of the IEEE TRANSACTIONS ON ADVANCED PACKAGING
and served as Associate Editor of the [EEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS and as Associate Editor of the Circuits, Systems and Signal Processing
Journal.

Flavio G. Canavero (M’90-SM’99-F’04) received
the electronic engineering degree from Politecnico
(Technical University) of Torino, Italy, and the Ph.D.
degree from the Georgia Institute of Technology, At-
lanta, GA, in 1986.

Currently, he is a Professor of Circuit Theory
with the Department of Electronics, Politecnico di
Torino. His research interests include signal integrity
and EMC design issues, interconnect modeling,
black-box characterization of digital integrated
circuits, EMI, and statistics in EMC.

Dr. Canavero has been the Editor-in-Chief of IEEE TRANSACTIONS ON
ELECTROMAGNETIC COMPATIBILITY. He is Chair of URSI Commission E,
Editor of the Practical Papers Section of the EMC Newsletters, and Organizer
of two IEEE Workshops in 2007 (Signal Propagation on Interconnects and
European Systems Packaging Workshop).

Ramachandra Achar (S’95-M’00-SM’04) re-
ceived the B.Eng. degree in electronics engineering
from Bangalore University, Bangalore, India, in
1990, the M.Eng. degree in microelectronics from
Birla Institute of Technology and Science, Pilani,
India, in 1992, and the Ph.D. degree from Carleton
University, Ottawa, ON, Canada, in 1998.

He spent the summer of 1995 working on high-
speed interconnect analysis at T. J. Watson Research
Center, IBM, Yorktown Heights, NY. He was a grad-
uate trainee at Central Electronics Engineering Re-
search Institute, Pilani, India, during 1992 and was also previously employed
at Larsen and Toubro Engineers Ltd., Mysore, India, and at Indian Institute of
Science, Bangalore, as an Research and Development Engineer. During 1998 to
2000, he served as a Research Engineer in the CAE Group, Carleton University.
He is currently an Associate Professor in the Department of Electronics, Car-
leton University. His research interests include signal integrity analysis, numer-
ical algorithms, and the development of computer-aided design tools for mod-
eling and simulation of high-frequency interconnects, nonlinear circuits, mi-
crowave/RF networks, optoelectronic devices, MEMS, and EMC/EMI. He has
published over 100 peer-reviewed articles in international journals/conferences,
six multimedia books on signal integrity, and five chapters in different books.
He is a practicing professional engineer in the Province of Ontario, Canada.

Dr. Achar is a recipient of several prestigious awards, including the Univer-
sity Research Achievement Award (2004), Natural Science and Engineering Re-
search Council (NSERC) Doctoral Medal (2000), Medal for the Outstanding
Doctoral Work (1998), Strategic Microelectronics Corporation (SMC) Award
(1997), Canadian Microelectronics Corporation (CMC) Award (1996). Also, he
and several of his students have won best student paper awards in premier IEEE
conferences such as EPEP and IMS. He serves on the technical program com-
mittee as a member as well as track chair of several leading IEEE conferences
and is a consultant for several leading industries focused on high-frequency cir-
cuits, systems, and tools. He is the Chair of the joint chapters of CAS/EDS/SSC
societies of the Ottawa IEEE section.



